

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0076 of 17/01/2020

Technical Assessment Body issuing the E for Construction Prague	ETA: Technical and Test Institute
Trade name of the construction product	VIFIX - VIPRO
Product family to which the	Product area code: 33
construction product belongs	Injection anchors for use in masonry
Manufacturer	BATIFIX / VISWOOD Rue de la Roseliere 42 450 Sury Le Comtal France
Manufacturing plant(s)	Usine 1
This European Technical Assessment contains	14 pages including 11 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330076-00-0604

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1. Technical description of the product

The VIFIX - VIPRO for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod is placed in the sieve sleeve. The installation of the anchor rod in solid masonry can be also done without a sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1
Reduction factor for job site tests (β – factor)	See Annex C 1
Edge distances and spacing	See Annex B 6
Displacement under shear and tension loads	See Annex C 1
Durability	See Annex A 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	-	1

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

¹ Official Journal of the European Communities L 073 of 14.03.1997

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague². The results of the factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

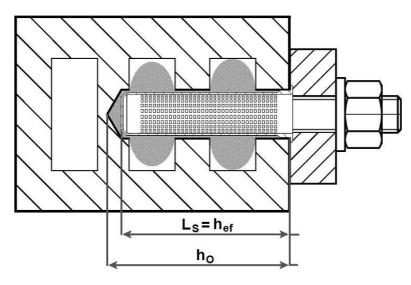
5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

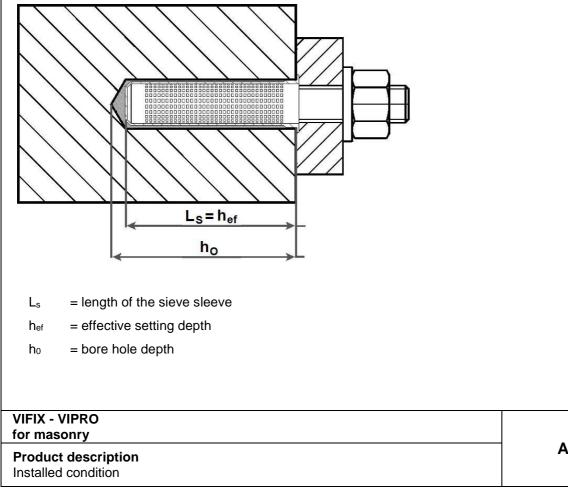
In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled, the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.

Issued in Prague on 17.01.2020

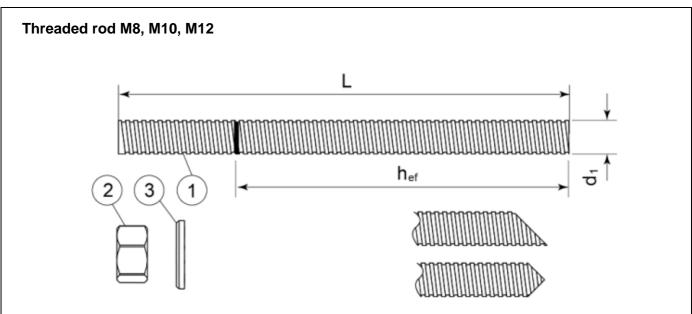

By

Ing. Mária Schaan Head of the Technical Assessment Body

² The control plan is a confidential part of the documentation of the European technical assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

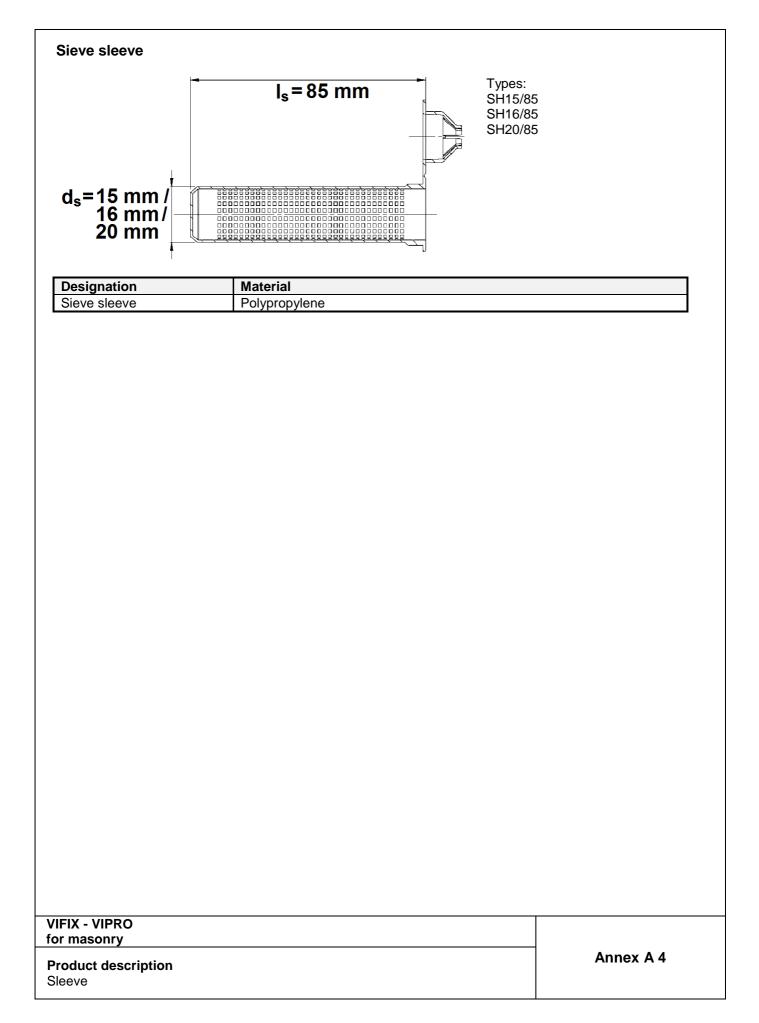

Installation in hollow or perforated brick masonry

Installation of anchor rod with sieve sleeve



Installation in solid brick masonry

Installation of anchor rod with or without sieve sleeve



Coaxial cartridge VIFIX - VIPRO	380 ml 410 ml	
Two part foil in a single piston conversion of VIFIX - VIPRO	omponent cartridge 165 ml 300 ml	
Marking of the mortar cartridges Identifying mark of the producer, The Curing and processing time	ade name, Charge code nu	mber, Storage life,
Mixing nozzle Canule K		
Canule R		
Canule E		
VIFIX - VIPRO for masonry Product description		Annex A 2
Injection system		

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material	
Steel	, zinc plated ≥ 5 μm acc. to EN ISC , hot-dip galvanized ≥ 40 μm acc. t , zinc diffusion coating ≥ 15 μm ac	o EN ISO 1461 and EN ISO 106	684 or
1	Anchor rod	Steel, EN 10087 or EN 102 Property class 5.8, 8.8, 10.9	
2	Hexagon nut EN ISO 4032	According to threaded rod,	EN 20898-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
Stain	less steel		
1	Anchor rod	Material: A2-70, A4-70, A4-	80, EN ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
High	corrosion resistant steel		
1	Anchor rod	Material: 1.4529, 1.4565, E	N 10088-1
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
	nized rod of high strength are sensiti	ive to hydrogen induced brittle fa	ilure
FIX - V r maso			
oduct	description d rod and materials		Annex A

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads

Base materials

- Solid brick masonry (Masonry group b), according to Annex B2.
- Hollow brick masonry (Masonry group c), according to Annex B2 to B3.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchorages may be determined by job site tests according to EOTA Technical Report TR 053 and under consideration of the β-factor to Annex C1, Table C4.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

- T: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

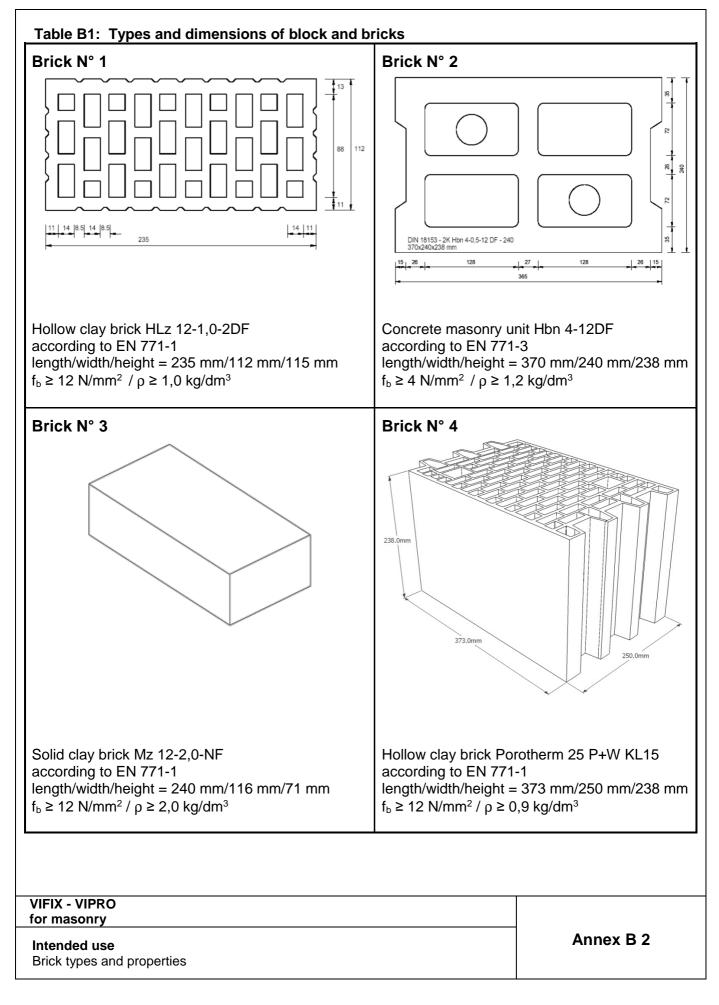
Use conditions (Environmental conditions)

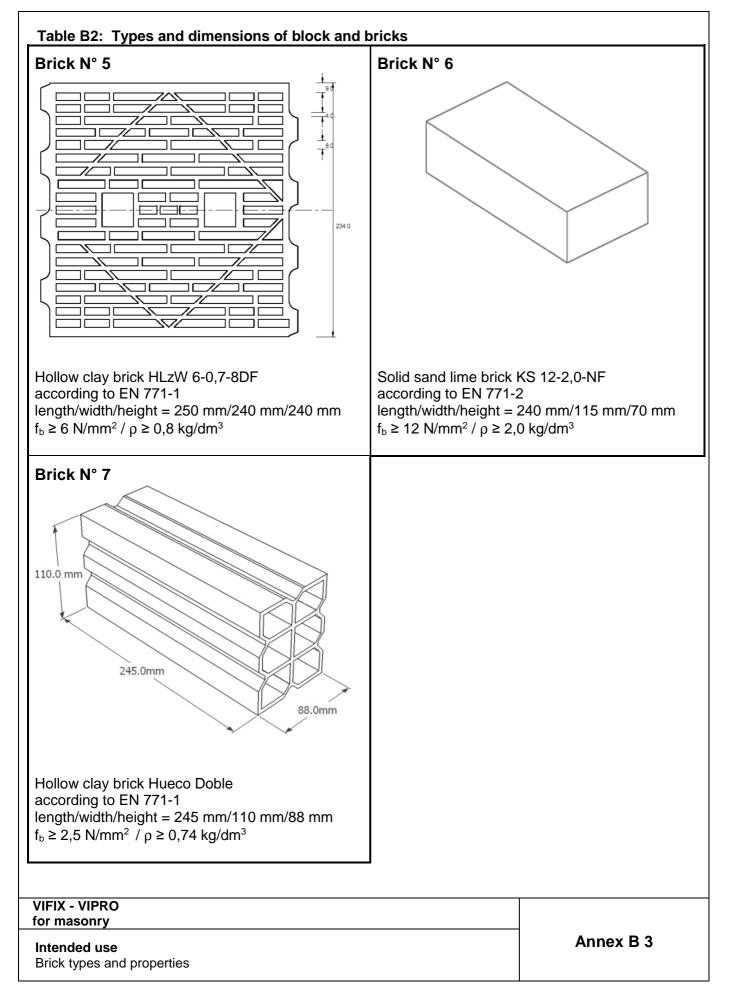
- (X1) Structures subject to dry internal conditions (zinc coated steel)

Use conditions in respect of installation and use:

- Category d/d Installation and use in structures subject to dry, internal conditions
- Category w/d Installation in dry or wet substrate and use in structures subject to dry, internal conditions

Design:


- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the EOTA Technical Report TR 054, Design method A,, under the responsibility of an engineer experienced in anchorages and masonry work.


Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

VIF	IX - VIPRO	
for	masonry	

Intended use Specifications Annex B 1

Applicator gun				
A				
B				
c				
Applicator gun	A Coaxial	B Foil capsule	C Foil capsule	
Cartridge	380 ml 410 ml	165 ml 300 ml	165 ml 300 ml	
Stainland	Natural Bristle	Double Helix made of Steel Wire		
VIFIX - VIPRO for masonry				
Intended use				Annex B 4
Applicator guns Cleaning brush, Clea	aning pump			
3 · · · · · , 5 · · · ·				

Installation	ninstructions			
	1. Drill the hole to the correct diameter and depth using a rotary percussive machine.	2x	2. Use the hole	the cleaning pump to clean
2×	3. Use the cleaning brush to clean the hole. Diameter of Cleaning brush according to Table B4.	2×	4. Use the hole	the cleaning pump to clean
2×	5. Use the cleaning brush to clean the hole. Diameter of Cleaning brush according to Table B4.	2×	6. Use the hole	the cleaning pump to clean
	 7. If used in hollow or perforated brick masonry: Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material. 			e the hole is prepared, the screw cap from the e.
	9 . Attach the mixer nozzle and place the cartridge in the applicator gun.	217		pense the first part to until an even colour is ed.
	11. Remove any remaining water from the hole.		end of t tubing if resin, w	ert the nozzle to the far he hole (using extension f necessary) and inject the rithdrawing the nozzle/tube nole fills.
	13. If used in hollow or perforated brick masonry: Insert mixer nozzle to the end of the perforated sleeve and completely fill the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills.		(steel e slight tv excess	nediately insert the fixing lement) slowly and with a visting motion. Remove resin from around the of the hole.
	15. Leave the fixing undisturbed until the cure time (see Table B6) has elapsed.		the nut.	ich the fixture and tighten Maximum installation moment according to 6.
VIFIX - VIPRO for masonry Intended use				Annex B 5

Anchor type			Ancł	nor ro	d					
Size			M8	M10	M12	N	18	M	10	M12
		[mm]	-	-	-	8	5	8	5	85
Sieve sleeve	ds	[mm]	-	-	-	15	16	15	16	20
Nominal drill hole diameter	d_0	[mm]	15	15	20	15	16	15	16	20
Diameter of cleaning brush db [mm]			20 ^{±1}	20 ^{±1}	22 ^{±1}	20)±1	20)±1	22 ^{±1}
Depth of the drill hole	h₀	[mm]	n] 90							
Effective anchorage depth hef [mm] 85										
Diameter of clearance hole in the fixture		[mm]	9	12	14	9	9	1	2	14
Torque moment T _{inst} ≤				2						

Table B5: Edge distances and spacing

	Anchor rod									
	M8 M10					M12				
Base material ¹⁾	C _{cr} = C _{min}	S _{cr} II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N° 1	100	235	115	100	235	115	120	235	115	
Brick N° 2	100	370	238	100	370	238	120	370	238	
Brick N° 3	128	255	255	128	255	255	128	255	255	
Brick N° 4	100	373	238	100	373	238	120	373	238	
Brick N° 5	100	250	240	100	250	240	120	250	240	
Brick N° 6	128	255	255	128	255	255	128	255	255	
Brick N° 7	100	245	110	100	245	110	120	245	110	

¹⁾ Brick N° according to Annex B 2 to B 3

Table B6: Minimum curing time

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	140
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	4	+25 to +30	40
+30	4	+30	35

T work is typical gel time at highest temperature

T load is set at the lowest temperature

VIFIX - VIPRO for masonry

Intended use

Installation parameters Working and curing time Annex B 6

Base material	Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾			
	M8	M10	M12	
Brick N° 1	2,0	2,0	2,0	
Brick N° 2	2,0	1,5	2,5	
Brick N° 3	1,5	1,5	2,5	
Brick N° 4	1,2	1,2	1,2	
Brick N° 5	1,2	0,9	0,9	
Brick N° 6	0,75	0,75	1,2	
Brick N° 7	0,75	0,5	0,5	

Table C1: Characteristic resistance under tension and shear loading

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C2: Characteristic bending moment

Size			M8	M10	M12
Steel grade 5.8	M _{Rk,s}	[N.m]	19	37	66
Steel grade 8.8	M _{Rk,s}	[N.m]	30	60	105
Steel grade 10.9	M _{Rk,s}	[N.m]	37	75	131
Stainless steel grade A2-70, A4-70	M _{Rk,s}	[N.m]	26	52	92
Stainless steel grade A4-80	M _{Rk,s}	[N.m]	30	60	105
Stainless steel grade 1.4529 strength class 70	M _{Rk,s}	[N.m]	26	52	92
Stainless steel grade 1.4565 strength class 70	M _{Rk,s}	[N.m]	26	52	92

Table C3: Displacements under tension and shear load

Base material	F [kN]	δ _№ [mm]	δ _∾ [mm]	δ _{v0} [mm]	δ _{v∞} [mm]
Solid bricks		0,6	1,2	1,0 ¹⁾	1,5 ¹⁾
Perforated and hollow bricks	N _{Rk} / (1,4 · γ _M)	0,14	0,28	1,0 ¹⁾	1,5 ¹⁾

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	N° 7
β - factor	0,62	0,60	0,48	0,65	0,43	0,26	0,65

VIFIX - VIPRO	
for masonry	
Performances	Annex C 1
Characteristic resistance, displacement	
β-factors for job site testing under tension load	